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ABSTRACT

Clay-polymer nanocomposites (CPNs) have been studied for two decades as sorbents for water pollutants,
but their applicability remains limited. Our aim in this review is to present the latest progress in CPN re-
search using a meta-analysis approach and identify key steps necessary to bridge the gap between basic
research and CPN application. Based on results extracted from 99 research articles on CPNs and 8 review
articles on other widely studies sorbents, CPNs had higher adsorption capacities for several inorganic
and organic pollutant classes (including heavy metals, oxyanions, and dyes, n = 308 observations). We
applied principal component analysis, analysis of variance, and multiple linear regressions to test how
CPN and pollutant properties correlated with Langmuir adsorption model coefficients. While adsorption
was, surprisingly, not influenced by mineral properties, it was influenced by CPN fabrication method,
polymer functional groups, and pollutant properties. For example, among the pollutant classes, heavy
metals had the highest adsorption capacity but the lowest adsorption affinity. On the other hand, dyes
had high adsorption affinities, as reflected by the linear correlation between adsorption affinity and pol-
lutant molecular weight. Scaling from ‘basic research’ to ‘technological application’ requires testing CPN
performance in real water, application in columns, comparison to commercial sorbents, regeneration, and
cost evaluation. However, our survey indicates that of the 158 observations, only 20 compared the CPN’s
performance to that of a commercial sorbent. We anticipate that this review will promote the design of
smart and functional CPNs, which can then evolve into an effective water treatment technology.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

inexpensive, and pollutant-specific alternatives to conventional sor-
bents (Kyzas and Matis, 2015).

Water resources often contain an array of pollutants that pose
public health and environmental concerns (Schwarzenbach et al.,
2010). Removing organic and inorganic pollutants from water
is often achieved by adsorbing them to activated carbon, ion
exchange resins, and oxides (Driehaus et al, 1998; Fu and
Wang, 2011; Kumar et al., 2019; Worch, 2012). However, each
of these sorbents has various critical shortcomings such as re-
duced effectiveness in the presence of background electrolytes
and organic matter (Dixit et al., 2018; Quinlivan et al.,, 2005),
low pollutant specificity (Ling et al., 2017), high operating costs
(Alhashimi and Aktas, 2017), and energy intensive regeneration
(Foo and Hameed, 2012). Therefore, in recent decades there has
been enormous interest in tailoring sorbents to provide efficient,
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Clay-polymer nanocomposites (CPNs) are a broad group of ma-
terials designed using many combinations of clay minerals and
polymers. Originally, clay minerals were dispersed into individual
layers and incorporated into the polymer phase, typically at less
than 5 wt%, to enhance polymer properties (Chen et al., 2008).
Clay minerals such as smectites have layers that are approximately
1 nm thick and a diameter of up to several microns. The Young’s
modulus in the layer direction is 50 to 400 times higher than
that of a typical polymer, thus the composite material has im-
proved properties such as Young’s modulus, tensile strength, fire
retardancy, barrier resistance, and ion conductivity (Chen et al.,
2008). Clay minerals often bare a negative charge resulting from
isomorphous substitution, and have the capacity to adsorb posi-
tively charged pollutants, such as heavy metals and cationic dyes,
via exchange of their counter cation. More recently, CPNs have
been studied as materials for pollutant removal from water in
membrane, flocculation, oxidation, and adsorption processes. By
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combining the valuable properties of the mineral component (low
cost, low toxicity, mechanical stability, and large surface area) with
those of the polymeric components (high adsorption efficiencies,
diverse functional group chemistry, enhanced swelling, and surface
area) CPNs can be tailored to target specific pollutants with en-
hanced adsorption performance, compared to bare clay minerals.
The field has rapidly evolved since Breen and Watson first reported
a CPN sorbent, composed of a polycation adsorbed to a smec-
tite mineral (Breen and Watson, 1998). Recent studies have re-
ported smart, multi-component composite sorbents based on mul-
tiple polymers and modifiers that are characterized using advanced
techniques (Gardi and Mishael, 2018; Hatami et al., 2020; Lv et al.,
2020; Ma et al., 2017; Rethinasabapathy et al., 2018; Sarkar et al.,
2018) and employed for the removal of an array of pollutants
(Ray et al., 2019).

Recent literature reviews on CPNs have qualitatively discussed
CPN “building blocks” (clays and polymers), fabrication meth-
ods, and properties (e.g., surface area and charge), compiled ad-
sorption results from relevant studies, and suggested future chal-
lenges and research directions (Han et al., 2019; Kar et al., 2019;
Mukhopadhyay et al., 2020; Srinivasan, 2011; Unuabonah and
Taubert, 2014). Such literature reviews are instrumental for sum-
marizing recent progress in a given discipline, but they cannot
quantitatively synthesize and interpret large-scale datasets and re-
sults across studies. In contrast, meta-analyses are aimed at deter-
mining overall trends by statistically analyzing data from several
independent studies of the same subject. Meta-analyses are adept
at summarizing and synthesizing diverse studies (Meng et al.,
2016; Meyer et al., 2019; Wolfram et al., 2018). A key benefit of
analyzing numerous studies is the aggregation of information that
leads to a higher statistical power and more robust estimates than
are possible from any individual study. Meta-analyses have been
implemented to identify universal trends in topics central to water
research such as phosphorous removal from lake waters (Spears
et al. 2016), decay rates of viruses and coliphages in surface wa-
ters (Beohm et al. 2019), and contaminant removal by conventional
and emerging media for urban stormwater treatment (Okaikue-
Woodi et al. 2020). However, only a handful of meta-analyses have
been performed on sorbents in general (Alhashimi and Aktas, 2017;
Benstoem et al., 2017; Mejias Carpio et al., 2018), and none have
been performed on clay-based sorbents.

Here, we present a quantitative meta-analysis of the data pub-
lished on CPNs in the last decade. From a basic science perspective
it is important to identify how CPN and pollutant properties influ-
ence adsorption performance (Kar et al., 2019), but a meta-analysis
can reveal more general trends based on numerous observations.
Translating CPN laboratory-based data into technology-based
processes is complex (Mukhopadhyay et al, 2020) and seldom
addressed (Gardi et al., 2015; Kumar et al., 2012; Ray et al., 2019).
This review highlights the key steps necessary to bridge CPN
laboratory-scale performance to technological applicability, which
is a crucial stage towards commercialization of CPNs, or any other
sorbent.

Accordingly, we collected sorbent, pollutant, and adsorption
data from 397 observations, published in 99 original research ar-
ticles and 8 review articles. We analyzed the adsorption perfor-
mance of CPNs for different pollutants using principal component
analysis (PCA), analysis of variance (ANOVA), and stepwise multi-
ple linear regression (MLR).

The aims of this review were to: 1) compile a database con-
sisting of information from CPN studies of the past decade to
quantify the number of studies reporting different clays and
polymers, modes of CPN fabrication, pollutants, and adsorp-
tion models, 2) analyze the linkages between CPN properties,
pollutant chemistry, and adsorption performance, 3) highlight
the necessary steps to benchmark novel CPNs in realistic wa-
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ter treatment scenarios, and 4) identify underexplored research
opportunities.

2. Methods

The workflow and methodology of this Review is depicted in
Fig. 1.

2.1. Literature review

We identified potentially relevant studies (n = 548) using the
search string (clay OR clay mineral) AND (polymer OR composite
OR nanocomposite) AND (water OR wastewater) AND (adsorption
OR sorption OR removal) AND (pollutant OR contaminant) occur-
ring in the title, abstract, and/or keywords of articles published in
the years 2008-2019 using the Web of Science Core Collection and
Google Scholar. Our search cutoff date was 14.9.2019, and our se-
lection criteria (below) yielded 99 articles and 158 experimental
observations (Fig. S1). We verified that each article reported orig-
inal, quantitative data for pollutant adsorption from an aqueous
matrix to a composite material consisting of, at the least, a clay
mineral or iron (Fe) oxide functionalized with a synthetic or natu-
ral polymer. Studies on CPNs based on an unidentified mixture of
clay minerals were excluded. Only studies that reported Langmuir
adsorption capacity (Qmax) and affinity (K;) or Freundlich model
coefficients (n and Kg) (see below), based on replicated adsorption
isotherms, were included. Separately, Google Scholar was searched
for review articles on widely studied sorbents that compiled pub-
lished data of pollutant adsorption. We chose commonly studied
pollutants for which we could extract n > 10 observations from at
least four additional sorbents and extracted their Qmax values. K;,
values were often not reported in these reviews and therefore not
included. While we acknowledge that a few sorbents included in
our meta-analysis may not meet the accepted definition of a nano-
material, the vast majority of them do. We chose to classify all sor-
bents reviewed here as CPNs to continue the terminology used in
recent reviews and papers (Kar et al., 2019; Mukhopadhyay et al.,
2020; Unuabonah and Taubert, 2014).

2.2. Data extraction

Information about the CPN, the targeted pollutant, adsorption
metrics, and other information were extracted from every experi-
mental observation in each study. 33 of the 99 studies contained
more than one experimental observation (e.g., one CPN tested for
more than one pollutant). CPN information included clay min-
eral and polymer type and CPN fabrication method (adsorption,
cross-linking, in-situ polymerization, or grafting). Montmorillonite
and bentonite were collectively classified as smectites, while atta-
pulgite, sepiolite, and palygorskite were classified as palygorskites.
Active adsorption sites, termed “functional groups” were inferred
from a priori knowledge about polymer chemistry, experimen-
tal results (e.g., effect of solution chemistry on adsorption, evi-
dence of cation or anion exchange, or spectroscopic findings) and
based on the discussion in each study. Where relevant, the pH of
the adsorption system was used to help assign functional groups.
For example, carboxyl groups were assigned as a CPN functional
group when the pH was higher than its typical pKa (~4.5). We
recorded, where available, CPN surface charge (n = 68 observa-
tions) inferred from electrophoretic mobility (Zadaka et al., 2010)
or potentiometric titration (Pereira et al., 2017) measurements, and
BET surface area (n = 62 observations) (Dogan et al., 2006). We
recorded, where available, CPN polymer (or organic component)
content (n = 50 observations). CPN polymer content was mostly
determined using thermogravimetric or elemental analysis of the
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Literature search (2008-2019)
548 research articles and 8 review articles found

Y

Criteria for research articles
Reported clay-polymer nanocomposite (CPN)
Reported Langmuir or Freundlich model coefficients

Criteria for review articles
Reported natural or designed sorbent

Reported Langmuir model coefficients

Y

4

99 research articles and 8 review articles included
397 unique observations

ﬂ Data extraction

SORBENTS POLLUTANTS
Activated carbon
Agricultural waste products
Biochar Organic Inorganic
Carbon nanotubes
*Dyes *Heavy metals

Clay minerals
Functionalized chitosan
Functionalized graphene

*Micropollutants  *Oxyanions

*Molar mass

*Clay-polymer *Charge
nanocomposites
Figures 2&4, Table S1 Figure S8

ADSORPTION METRICS CPN BENCHMARKING

Column filtration
Regeneration
Real water
Experimental comparison

Pseudo 2™ order kinetic model
Thermodynamic parameters
Freundlich model

*Langmuir model

Table 1 Figure 7

| Meta analysis

/ l

[

Figures 3,5,6 and Tables 1,54,55

Effect of CPN and pollutant properties on adsorption

Evaluating CPN applicability
Figure 7

Y J

Future research directions

Fig. 1. Flowchart of the Critical Review. Parameters included in formal statistical analyses are depicted with a *.

solid phase, or in the case of CPN fabrication using direct poly-
mer adsorption, by measuring the non-adsorbed polymer concen-
tration. However, thermogravimetric analysis results were only in-
cluded if they accounted for mass loss from CPN dehydration and
other structural decomposition of the clay mineral as described by
Ray et al. (Ray et al., 2019).

Organic and inorganic pollutants were binned into four classes:
dyes (n = 53), micropollutants (n = 23), heavy metals (n = 65),
and oxyanions (n = 17). Studies on the adsorption of other in-
organic ions, including fluoride (n = 4), cesium (n = 1), and
ammonium (n = 1) were excluded due to insufficient sample size.
Pollutant information included molecular weight (My,) and charge
(negative, neutral, or positive) at the pH value of the adsorption
experiment. We excluded studies on substances lacking a definitive
My, such as dissolved organic matter.

CPN adsorption performance was evaluated by analyzing ad-
sorption isotherm coefficients. An adsorption isotherm is a curve
describing the retention of a substance, at equilibrium, on a solid
particle. Data from adsorption isotherms are typically fit to Lang-
muir and Freundlich models. The Langmuir isotherm equation was
developed to model homogenous, monolayer adsorption of gas to
a solid surface (Foo and Hameed, 2010), but is the most widely
used model to interpret adsorption from aqueous media. The Lang-
muir adsorption capacity (Qmax) reflects the maximum amount of
adsorbed pollutants per unit mass sorbent, and the Langmuir ad-
sorption coefficient (K ) quantifies the affinity of a pollutant to the
sorbent surface. Across the entire database, CPNs had median Qmax
and K, values of 0.55 mmol/g, and 29.64 L/mmol, respectively. The
Freundlich isotherm equation is a power function; while lacking a
thermodynamic basis, it is often used to fit adsorption data to het-
erogenous adsorption sites (Foo and Hameed, 2010). Freundlich co-
efficients include the dimensionless n, and the Freundlich constant
(Kg), which relays information on the extent of adsorption, though

it does not predict adsorption capacity (Foo and Hameed, 2010). In
cases where Langmuir and Freundlich models were applied to the
same adsorption isotherm, we extracted the coefficients that pro-
vided a better fit for the data.

Adsorption coefficients were converted to molar basis us-
ing pollutant My, as necessary. We used the reported pH in
the adsorption experiment to determine the M,, of oxyanions,
which varies with pH. Thermodynamic parameters (AG?, AH? and
AS9), which can be calculated from adsorption isotherms mea-
sured at several temperatures, and the pseudo-second-order ki-
netic model coefficient, calculated from adsorption kinetic exper-
iments (Tran et al., 2017), were also extracted.

To assess whether CPNs were benchmarked and tested for wa-
ter treatment applications, we recorded whether the following ex-
periments were performed in addition to those described above:
i) pollutant adsorption from varying solution chemistry (pH and
ionic strength), ii) pollutant adsorption from ‘real water’ (wastew-
ater, natural water, or synthetic ‘real water’, i.e., deionized wa-
ter containing multiple pollutants and background solutes), iii) re-
generation of spent CPNs, iv) adsorption experiments in fixed-
bed columns, v) experimental comparison of CPNs to commercially
used sorbents, and vi) cost evaluation.

The complete database and references for the articles used in
this meta-analysis are included in the Supplementary Material.

2.3. Statistical analyses

2.3.1. Principal component analysis (PCA)

We tested for an association between minerals, functional
groups, pollutant properties (class, charge), CPN fabrication meth-
ods, and Langmuir coefficients using principal components anal-
ysis (PCA). PCA results were computed (after scaling) using Fac-
toMineR, an R package for multivariate analysis (Lé et al., 2008)



LA. Shabtai, LM. Lynch and Y.G. Mishael

and visualized using statistical tools for high-throughput data anal-
ysis (Kassambara, 2017). Confidence ellipses were used to visualize
whether categorical groups were significantly different from each
other and defined as regions containing 95% of all samples that
can be drawn from the underlying Gaussian distribution. Variables
with n (10 observations or p-values) 0.05 were excluded.

2.3.2. One-way analysis of variance (ANOVA)

We used one-way ANOVA models to identify the main effects
of mineral, pollutant properties (class, charge), and CPN fabrica-
tion method, on our dependent variable of interest (Qmax and Kp).
We compared ANOVA results with those from linear mixed-effect
models (LMER) using the Ime4 package (Bates et al., 2007). LMER
models were constructed as above but included study ID as a cat-
egorical random effect to account for the nonindependence of ob-
servations originating from the same study. For all models, Qmax
and K; values were transformed to fit assumptions of normality
using the log10 scale. Normal distributions were evaluated using
Shapiro-Wilk tests and QQ-plots. Estimated marginal means were
computed using the emmeans package (Lenth et al., 2018), and
coefficients (b;-b;) were back-transformed in the manuscript for
ease of interpretation (Lane, 2002). P-values were calculated using
Tukey’s HSD method for comparing a family of estimates.

2.3.3. Multiple linear regression (MLR)

We constructed multiple linear regression models using CPN
and pollutant properties as covariates for predicting variation in
Qmax and K;. Dummy variables were made from categorical vari-
ables, excluding those with fewer than 10 observations. We used
exhaustive (forwards and backwards) stepwise AIC (Akaike Infor-
mation Criterion)-selected linear regression models to identify re-
lationships between our dependent variable of interest (Qmax or
K.) and potential predictor variables, for two common pollutant
classes (heavy metals and cationic dyes). We analyzed subsets of
the database so mutually exclusive variables were not included
in the same model (for example, heavy metals, which are always
positively charged, and oxyanions, which are always negatively
charged). Stepwise multiple linear regressions were conducted fol-
lowing reported procedure (Lynch et al., 2019) using the stats pack-
age in R (Team, 2013). We normalized dependent variables using
the boxcox power transformation to yield normally distributed er-
rors, assessed using Shapiro-Wilk tests of the residuals, Q-Q plots,
Studentized Residuals, and non-constant variance scores. Best-fit
model results, AIC scores, and boxcox A values are reported in the
Supplementary Material (Table S5).

3. Results
3.1. Dataset

Our literature search yielded 158 experimental observations
from 99 published papers. For comparison, similar meta-analyses
of adsorption systems consisted of n = 44, n = 195, and n = 63
observations (Benstoem et al., 2017; Kumar et al., 2019; Mejias Car-
pio et al., 2018). For each of the observations we compiled infor-
mation and the following data were included in statistical anal-
yses: clay and polymer type, CPN fabrication method, and pollu-
tant class, charge, and molecular weight. Data on CPN surface area,
surface charge, and polymer content—potentially important vari-
ables describing CPN properties—were available for a limited num-
ber of observations and therefore not included in the formal meta-
analysis.

Principal component analyses examining Freundlich (n = 46)
and pseudo-second-order kinetic (n = 98) model coefficients, and
thermodynamic parameters (n = 54) as adsorption metrics, were
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constrained by few observations and reported in the Supplemen-
tary Material (Figures S2-S4). We ultimately restricted our PCA,
ANOVA, and MLR analyses to Langmuir model coefficients (Qmax
and K;) (n = 141) due to the low number of observations of the
adsorption metrics.

To assess the percentage of observations that report CPN bench-
marking and application testing, we recorded if the following ex-
periments were performed: pollutant adsorption from ‘real wa-
ter’, regeneration of spent CPNs, adsorption in fixed-bed columns,
experimental comparison of CPNs to commercially used sorbents,
and cost evaluation.

3.2. Synthesis of data on CPN adsorption performance

3.2.1. Pollutant adsorption by CPNs versus common sorbents

Our survey indicates the Langmuir adsorption capacities (Qmax)
of CPNs for several commonly studied organic (dyes) and inor-
ganic (heavy metals and oxyanions) pollutant classes exceeded or
equaled those of other sorbents, including biochar, activated car-
bon, and modified chitosan (Fig. 2 and Table S1). K; values were
often not reported for these sorbents and therefore not included.
Although variation in solution chemistry and experimental con-
ditions affects adsorption coefficients (Wang and Giammar, 2019),
we observed significant differences in Qmax among sorbents (P <
0.0001) and significant interactions between sorbent and pollutant
class (P < 0.01) across this large dataset, which encompassed mul-
tiple experimental conditions (n = 308 observations).

While some sorbents have a high Qmax because they are chem-
ically compatible with one specific pollutant class—for example
activated carbons for dyes (Mezohegyi et al.,, 2012; Yagub et al.,
2014) or graphene oxides for heavy metals (Peng et al., 2017)—
the high Qmax of CPNs for each pollutant class stems from their
tunability, or chemically compatibility, with a wide range of pol-
lutants. CPNs are also superior sorbents than their clay mineral
building blocks. The Qmax of CPNs, averaged over all three pollu-
tant classes is 1.72 mmol/g and the K; is 201.45 L/mmol. For com-
parison, the Qmax of smectite for Cu?t and methylene blue—the
most widely studied mineral, heavy metal, and cationic dye in our
survey—is 0.45 mmol/g and 0.9 mmol/g, respectively, while the K;
is 1.9 L/mmol and 3.2 L/mmol, respectively (Almeida et al., 2009;
Bhattacharyya and Gupta, 2006). The advantage of positive CPNs
over bare smectite (which bears a negative surface charge) would
likely be more pronounced for the adsorption of anionic pollutants.

3.2.2. Visualizing relationships among variables

To identify parameters driving the high Qmax of CPNs, we used
principal component analysis (PCA) to assess relationships between
CPN properties, pollutant properties, and Langmuir model coeffi-
cients. Within ordination space, dimensions 1 and 2 together ex-
plained 25% of the variance (Fig. 3 and Table S2). Based on 95%
confidence intervals (visualized as shaded ellipses), dyes and heavy
metals were significantly different from each other and from mi-
cropollutants and oxyanions (micropollutants and oxyanions were
not significantly different). Qmax loaded in the opposite direction
from oxyanions and micropollutants, suggesting adsorption capac-
ity for these classes was lower, though Qmax values accounted for
only 5% of the variability across the first two dimensions. In con-
trast, K; values accounted for 10% of the variability along dimen-
sion 2 alone, suggesting the affinity of dyes and high M,y pollu-
tants for the tested CPNs, especially those based on smectites, were
higher than average. The positive correlation between My, and K
(P < 0.0001; Figure S5) supports established evidence that adsorp-
tion affinities increase with M,y (Breen, 1999). This trend may be
related to the energy gain of high M,, pollutants dehydrating and
forming multiple interactions with the sorbent surface.
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Fig. 2. Langmuir adsorption capacity (Qmax) of some common sorbents for selected heavy metals (Pb?+ and Cu?*), oxyanions (Cr(VI)), and dyes (methylene blue and crystal
violet), emphasizing the higher capacity of clay-polymer nanocomposites (CPNs). Boxplot widths are drawn proportional to the square-root of the number of observations

within each sorbent class (including only sorbents with more than 10 observations).
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samples to principal components 1 and 2 are shown with vector shade and symbol size, respectively. Shaded ellipses display 95% confidence intervals. X-link: cross-linking
fabrication; R-SO5;~: sulfonate functional group. Results of the PCA analysis are reported in Tables S2a and S2b.

Fabrication methods influence the chemical and structural
properties of CPNs, thereby influencing their adsorption perfor-
mance (see Section 3.3.3). Fabrication using the in-situ polymeriza-
tion approach was positively correlated with dimension 2 (0.55)
and explained 14% of the variance, loading with Qmax, and sul-
fonate and cation exchange functional groups (Fig. 3 and Table S2).
In contrast, adsorption fabrication methods were negatively corre-

lated with dimension 2 (—0.67) and explained an additional 20%
of the variance. Along with cross-linking, fabrication methods ex-
plained 38% of the variance, indicating their crucial role in CPN
adsorption performance.

Oxyanions were strongly related to CPNs bearing cationic amine
functional groups, which accounted for 15% of the variability across
dimension 1, while micropollutants were associated with aromatic
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Table 1
Linear and linear mixed effects regression results for Langmuir adsorption capacity (Qmax, n = 141), and affinity (K,
n = 138).
Effect Adsorption capacity Qmax Adsorption affinity K
Linear model Mixed effect model  Linear model Mixed effect model
DF  Fratio P value Fratio P value Fratio Pvalue Fratio P value
Clay mineral 5 0.85 0.51 0.31 0.91 2.87 0.02 1.77 0.13
Fabrication method 3 10.54 <0.0001 5.25 0.002 3.22 0.03 1.83 0.15
Pollutant class 3 6.98 0.0002 2.87 0.04 6.46 0.0004 4.42 0.005
Pollutant charge 2 7.85 0.0005 2.51 0.09 491 0.009 2.02 0.14
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Fig. 4. Summary of CPN building blocks: (A) clay minerals, (B) polymers, and (C) polymer functional groups.

functional groups, accounting for 10% of variance explained across
the first two dimensions (Table S2). In contrast, heavy metals were
associated with amine, carboxyl, and cation exchange functional
groups, which together accounted for 17% of the variability across
dimension 1. Together, these results reveal that observations are
separated across pollutant class and charge, polymer functional
group, and fabrication method, demonstrating that CPNs can be ra-
tionally designed to maximize chemical interactions between the
polymer and targeted pollutant.

3.2.3. CPN building blocks

At their simplest form, CPNs consist of a clay-mineral function-
alized with a polymer. We present these CPN “building blocks”
and discuss how various fabrication methods shape the struc-
ture and properties of CPNs. We then assess their contribu-
tion to adsorption performance, using one-way ANOVA (Table 1
and Table S4) and stepwise multiple linear regressions (Table 2
and S5).

3.2.3.1. CPN building blocks - clay minerals. Clay minerals are well-
known sorbents with exhaustively characterized adsorption sites
(Gaines and Thomas, 1953; Ikhsan et al., 1999). Our survey shows
that most CPNs were designed using six different mineral classes
(Fig. 4A). Smectites, phyllosilicates based on Si tetrahedra and Al
octahedra (2:1), were the most commonly used mineral (63% of
observations), likely because they easily disperse in water and po-
lar organic solvents (Gardi and Mishael, 2018; Herrera et al., 2004),
and possess a large total surface area (710 m?/g) and cation ex-
change capacity (0.85 meq/g) (Borden and Giese, 2001). These
traits are well suited for the adsorption of cationic and neutral

polymers (Deng et al., 2006), and the exchange sites serve as ad-
ditional adsorption sites for cationic pollutants such as heavy met-
als (Barbier et al., 2000). Other clay minerals included palygorskite
(10%), zeolite (6%), layered-double hydroxide (LDH) (6%), Fe-oxide
(5%), halloysite (5%), kaolinite (3%), and K-feldspar (2%). While Fe-
oxides are not clay minerals, they are mineralogically related and
widely reported as useful sorbents for water treatment (Xu et al.,
2012).

Although smectites were the most prevalent clay building block,
several interesting studies selected less explored clay minerals, in-
cluding zeolites, LDHs, and palygorskites. Zeolites are aluminosili-
cates based on Al and Si tetrahedra that form microporous, nega-
tively charged frameworks, containing exchangeable metal cations.
Zeolite pores can serve as adsorption sites that target a specific
pollutant or a broad mixture of pollutants, based on the unifor-
mity of their structure (Rossner et al., 2009). In contrast to most
clay minerals, synthetic LDHs possess a positive surface charge be-
cause of partial substitution of trivalent for divalent cations in the
brucite-like layers (Goh et al., 2008). This allows for facile func-
tionalization of LDHs with anionic (bio)polymers such as alginate
and fulvic acids, and subsequent removal of cationic pollutants
(Li et al., 2018). Palygorskites are fibrous clay minerals, with high
porosity (0.38-0.58 cm3/g), high specific surface area (173 m?/g)
(Dogan et al., 2006) and abundant surface Si-OH groups that can
be hydrolyzed to obtain pH-dependent charged groups (Liu et al.,
2015), or grafted with organo-silanes as a first step for surface-
initiated polymerization (Chen et al., 2009; Xue et al., 2011).

Due to small sample sizes (n < 5) K-feldspar and kaolinite
were excluded from ANOVA models. Despite large differences in
their structure, surface area, and exchange capacity (Table S3),
Qmax values did not differ across mineral classes in the standard
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(P = 0.5) or random mixed effects (P = 0.9) model (Table 1 and
Figure S6). K values varied across mineral class (P = 0.02), but
all pairwise comparisons were insignificant. Similar CPN adsorp-
tion performances across clay building blocks is likely caused by
the dominating influence of polymer functional group chemistry

% % % (Ray et al., 2019), CPN surface charge (Shabtai and Mishael, 2016),
2 k5 and CPN structure (Levy et al.,, 2019; Shabtai and Mishael, 2018).
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ronitrile or ammonium persulfate) (Zhu and Wilkie, 2000). The
cross-linking method (10% of observations) consists of reacting a
clay or clay-polymer mixture with a cross-linking compound (e.g.,
alginate or epichlorohydrin) that forms bonds between adsorbed
polymer chains, polymer chains and clay, or that self-polymerizes,
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Fig. 5. Langmuir adsorption capacity (Qmax, panel A) and affinity (K, panel B) of CPNs fabricated using different approaches. Circles are colored according to pollutant
charge, and boxplot widths are drawn proportional to the square-root of the number of observations for each fabrication method. Letters indicate Tukey’s honestly significant
differences between composite preparation methods (P < 0.05). Dashed lines represent the mean Log Qmax and Log K; values across all observations.

and as a result reinforces the CPN structure (Tirtom et al., 2012).
Cross-linked CPNs are often capable of swelling and adsorbing
large amounts of water (hydrogels), which facilitates rapid pollu-
tant transport to adsorption sites (Massaro et al., 2017). The graft-
ing method (9% of observations) consists of covalently bonding a
polymer to the mineral surface, or rarely, by grafting an initiator
to the surface, followed by in-situ polymerization (Liu, 2007). The
grafting approach achieves a chemically stable nanocomposite due
to the covalent bonding of mineral and polymer building blocks.
An additional 6% of observations used other fabrication methods
such as electrospinning, melt-mixing, calcination, and gamma radi-
ation (Figure S7), which may offer new pathways to CPN develop-
ment, but were excluded from ANOVA models due to low sample
size (n < 5).

Qmax values were significantly different across CPN fabrication
methods (P < 0.0001), where the mean effect of in-situ polymer-
ization was significantly higher than adsorption, cross-linking, and
grafting (Fig. 5A, Table 1). In both the linear and linear mixed ef-
fects models, the mean effect of in-situ polymerization was 4.8
times that of adsorption (P < 0.0001) and associated with obser-
vations of positively charge pollutants (Fig. 5A and Table S4). To
account for the fact that mostly positively charged pollutants were
tested by in-situ polymerized CPNs, we also tested the interaction
between CPN fabrication method and pollutant charge on Qmax.
Qmax was significantly affected by the interaction between fabri-
cation method and pollutant classes (P = 0.01). This could sug-
gest that polymers employed for this type of CPN, such as poly-
acrylic acid and polyacrylamide, were especially suited for the ad-
sorption of positively charged pollutants. We suggest that future
studies investigate designing in-situ polymerized CPNs for removal
of anionic pollutants as well. Including study ID as a random effect
reduced differences in estimated means (P = 0.002), such that only
in-situ polymerization and adsorption methods differed from each
other (Table S4). The higher Qmax associated with in-situ polymer-
ization is likely due to the high polymer loading achievable relative
to other fabrication methods (Gardi and Mishael, 2018). Normaliz-
ing pollutant adsorption to polymer loading on the mineral (mass
pollutant per mass polymer) would enable a direct comparison of
CPN efficiency. In contrast, K; is expected to be more influenced by
polymer-pollutant interactions than polymer loading (Levy et al.,
2019).

K values were also significantly influenced by CPN fabrication
method (P < 0.05). Here, the mean effect of adsorption was 3
times greater than in-situ polymerization (P < 0.05) and associ-
ated with negatively charged pollutants (Fig. 5B, Tables 1 and S4).
Difference in means did not remain significant when study ID was
included as a random effect.

While higher Qmax values indicates a CPN can adsorb more pol-
lutant molecules, higher K; values are related to the nature of the

interaction. We previously found that CPNs with higher K| per-
formed better in fixed-bed columns than CPNs or activated carbons
with lower K| but higher Qmax (Kohay et al., 2015; Shabtai and
Mishael, 2018). A sorbent with high K; is also likely to remove
pollutants at low concentrations more efficiently than a sorbent
with a similar Qmax, but a lower K;. As a result, one must consider
Qmax and K| in tandem when testing a sorbent for water treat-
ment (Wang and Giammar, 2019). For example, CNPs fabricated
via in-situ polymerization may be appropriate in applications that
require the removal of pollutants present at high concentrations
(Wang et al,, 2011). In contrast, CPNs fabricated via the adsorption
method may be better suited for the rapid and complete removal
of pollutants at trace concentrations (Guillossou et al., 2019).

3.2.4. Pollutant class and charge

Surveyed studies tested the adsorption of 58 different organic
and inorganic pollutants (Figure S8), which were binned into four
classes (dyes, micropollutants, heavy metals, and oxyanions). Dyes
(n = 53) are high molecular weight organic compounds that have
pi-electron systems that can be excited by visible light, and often
exhibit pH-dependent charge. Micropollutants (n = 23) are organic
compounds, such as agrochemicals, pharmaceuticals, and polyaro-
matic hydrocarbons, which have a lower molecular weight, are
mostly non-charged or negatively charged (in this study), and often
have pi-electron systems. Inorganic pollutants include heavy met-
als (Ali and Khan, 2018) (n = 65) and oxyanions (n = 17). The most
frequently studied pollutants were the heavy metals Cu2t (n = 16),
PbZ+ (n = 15) and Cd%* (n = 12), the oxyanion Cr(VI) (n = 10), the
dye methylene blue (n = 19), and the micropollutant bisphenol A
(n=4)

These heavy metals, oxyanions, and micropollutants are all EPA-
regulated water pollutants or included in contaminant candidate
lists (CCLs), and their removal from water warrants the develop-
ment of novel sorbents. However, methylene blue is neither reg-
ulated nor included in CCLs, but receives disproportionate focus
in the field of novel water remediation technologies (Bielska and
Szymanowski, 2006; Houas et al., 2001; Rafatullah et al., 2010;
Zhang et al., 2009), perhaps due to the ease with which it can be
quantified, and to the vast existing literature that allows easy com-
parison of results. We strongly suggest future research limits its
focus on methylene blue, and instead focus on persistent emerging
micropollutants (Bai et al., 2018; Tran et al., 2018).

Qmax values were significantly influenced by pollutant class and
charge (P < 0.001) (Fig. 6A and C, Table 1). Micropollutants had
significantly lower Qmax values than dyes (P = 0.03) and heavy
metals (P = 0.0001). Accordingly, Qmax values were higher for pos-
itively than neutral (P = 0.003) or negatively (P = 0.02) charged
pollutants, with estimated mean effect sizes of 4.2 and 2.4, respec-
tively (Table S4).



LA. Shabtai, L.M. Lynch and Y.G. Mishael

Water Research 188 (2021) 116571

dyes O—txﬂ@%—@%

micropollutants
[} "
heavy metals 5,00 "'.'&w’w':‘.‘."

oxyanions

QO ' ' a
x @,!‘!“'-‘!\

Pollutant charge
o negative

e neutral

@ positive

positive

neutral

negative

Pollutant class
0 dyes

o micropollutants
0 heavy metals
© oxyanions

2

1 0 1
Log Qmax (mmol/g)

Log K. (L/mmol)

Fig. 6. Langmuir adsorption capacity (Qmax, A&C) and affinity (K, B&D) of CPNs for different pollutant classes and charges. Circles are colored according to pollutant charge
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K. values were also significantly influenced by pollutant class
(P < 0.001) and charge (P < 0.01) (Fig. 6B and D, Table 1). The
mean effect of dyes was 6.5 times higher than heavy metals (P <
0.001) (Table S4). K; values were significantly higher for negatively
than positively charged pollutants (P < 0.01) (Fig. 6C, Table 1)
(though post hoc tests did not reveal significant pairwise com-
parisons), suggesting negatively charged dyes and oxyanions drive
high K; values. These results correspond well to the PCA plot,
which showed that K; was associated with negatively charged dyes
(Fig. 3), and to the regression between K; and pollutant My, (Fig
S5), which was highest for dyes. When including study ID as a
random effect, mean effects were diminished due to reduced de-
grees of freedom and large within- versus across-study variance,
however trends were similar (Table 1). This variance highlights the
need for testing CPN performance across labs using standardized
protocols (see Section 3.6). Improving confidence in results within
the field is essential for honing the design and technological adop-
tion of novel materials.

3.2.5. Pollutant-functional group interactions

According to our survey, CPNs adsorb pollutants through several
types of functional groups and participate in numerous chemical
interactions. For example, charged carboxylate and cationic amines
can form electrostatic and ion exchange interactions. This is use-
ful for targeting heavy metals, oxyanions, and polar moieties in or-
ganic pollutants (El-Dessouky et al., 2018; Gardi and Mishael, 2018;
Lozano-Morales et al., 2018). Polymer aromatic rings and aliphatic
chains can interact with organic pollutants through hydrophobic
and pi-pi interactions (Cao et al., 2009; Kohay et al., 2015). Amine
and amide polymer functional groups can complex heavy metals
(Cho et al., 2012; Kumararaja et al., 2018), and polymer hydrox-
yls can form H-bonds with various pollutant molecules. Potential
mechanisms involved in pollutant adsorption by CPNs has been re-
cently summarized (Mukhopadhyay et al., 2020).

Here, we used stepwise multiple linear regression (MLR) to
evaluate whether specific pollutant-functional group interactions
can explain the variance in Qmax and K; across pollutant class and
charge. We focus on heavy metals and cationic dyes because they
have enough observations for robust analysis. We did not include a

formal analysis of oxyanions and micropollutants due to low sam-
ples size (n = 17 and n = 23, respectively).

3.2.5.1. Heavy metals. Qmax values for heavy metals were best ex-
plained with a model specification including six explanatory vari-
ables (adjusted R2 = 0.77, P < 0.0001) (Table 2 and S5). Qmax
values were strongly, negatively correlated with adsorption fab-
rication method, but positively correlated with in-situ polymer-
ization, cation exchange, and amide functional groups. Pollutant
molecular weight and CPNs based on smectite significantly im-
proved AIC scores, but the coefficients were not statistically sig-
nificant and small in magnitude. K; values were positively cor-
related with in-situ polymerization, but negatively related to the
molecular weight of heavy metals, as well as cation exchange and
amide functional groups (adjusted RZ = 0.21, P < 0.01) (Table 2
and S5).

The effect of fabrication mode and polymer functional groups
on Qmax is in line with PCA and ANOVA results (Figs. 3, 5, and
Table 1), which suggest that in-situ polymerization may be the
most advantageous fabrication approach for heavy metal removal.
Considering the higher polymer content often achieved by this fab-
rication method, we suggest Qmax values should be normalized
to polymer content (mass pollutant per mass polymer) to iden-
tify whether in-situ polymerization increases the number or ac-
cessibility of adsorption sites (Shabtai and Mishael, 2018) com-
pared with CPNs fabricated by polymer adsorption. PCA plots re-
vealed that heavy metal studies clustered around amine functional
groups, or carboxyl and cation exchange groups, suggesting heavy
metals are targeted through complexation and electrostatic/ion ex-
change mechanisms (Anirudhan et al., 2012), respectively. MLR re-
sults also suggest cation exchange and amide functional groups—
which also form complexes with heavy metals (Boyd et al., 1979)—
were associated with high heavy metal Qmax, but amide functional
groups were also linked to low K; values. This implies that CPNs
with ion exchange/electrostatic and complexing capabilities (such
as amide and carboxyl containing polymers) have excellent poten-
tial for heavy metal removal, but require more in-depth investiga-
tion (Ilgin et al., 2015).



LA. Shabtai, LM. Lynch and Y.G. Mishael

2150
. . o
Scientific z
: . 2100
Investigation :
5 50
o
-
°°f ¢ 2 S
25 & 5§08
= x
2 O £ &
[iv] _S & éﬁ
E
3
p——
@ Pollutants
-

Water Research 188 (2021) 116571

Technological
Application

commercial
sorbent

clay-polymer
nanocomposite

Column

Real Water

Cost Evaluation

Sorbent Comparison
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3.2.5.2. Cationic dyes. Variation in the adsorption capacity of CPNs
for cationic dyes was best explained by including four variables
(adjusted R2 = 0.3, P = 0.001) (Table 2 and S5). In this model,
Qmax Was positively correlated with polymer hydroxyl and carboxyl
functional groups, and negatively correlated with in-situ polymer-
ization fabrication. Pollutant My, was also included in the best-fit
model, but the coefficient was small. We could not identify a best-
fit model to explain variation in K; values of cationic dyes based
on the tested CPN and pollutant properties (adjusted R?2 = 0.08,
P = 0.07) (Table 2 and S5).

The MLR and PCA results (Fig. 3, Table S2 and Table 2 and S5)
both indicate a positive association exists between cationic dyes
and carboxyl and hydroxyl functional groups, indicating electro-
static/ion exchange, H-bonding, and other non-specific interactions.
In contrast to heavy metals, in-situ polymerization was strongly
negatively correlated with Qmax, suggesting this fabrication method
reduces the accessibility of adsorption sites for dye pollutants. This
could be the result of the large molecular size of dyes (Shabtai and
Mishael, 2016) (e.g., 17 A methylene blue (Greathouse et al., 2015)
vs. 419 A for Cu+) (Asthagiri et al., 2004) and the thick poly-
meric phase produced by in-situ polymerization (Shaheen et al.,
2016). To investigate adsorption site accessibility, a molar calcu-
lation of adsorbed dyes per adsorption sites (assuming the com-
position and stoichiometry of the adsorption sites are known) is
required (Shabtai and Mishael, 2018). However, this is seldom re-
ported in the literature.

3.2.5.3. Oxyanions. Oxyanions were strongly associated with
cationic amine groups, which is indicative of an electrostatic
adsorption mechanism (Fig. 3 and Table S2). The above-average K;
values indicate that CPNs are an excellent sorbent for oxyanion
removal (Gardi and Mishael, 2018), however lower than average
Qmax values (and low number of observations) highlight the need
for future research in this direction (Fig. 6A and B), perhaps
focusing on CPNs fabricated via in-situ polymerization.

3.2.5.4. Micropollutants. Based on PCA results, neutral micropollu-
tants were targeted via pi-pi interactions with aromatic functional
groups (Cao et al., 2009; Keiluweit and Kleber, 2009), while nega-
tively charged micropollutants could also be targeted via cationic
amine functional groups (Ateia et al., 2019; Kohay et al., 2015).

10

The low Qmax of micropollutants (Fig. 6A) could suggest CPNs have
been better tailored for targeting charged pollutants, which were
primarily tested in this meta-analysis, and are less effective for un-
charged micropollutants. However, this could also be an underes-
timation due to having only one observation of micropollutant re-
moval by a CPN fabricated using in-situ polymerization (Guo et al.,
2011), which has been shown to correlate with high Qmax. The to-
tal number of studies on micropollutants is small (n = 23), ne-
cessitating further research to optimize CPNs for their removal.
A potentially useful approach may be functionalizing clays with
aromatic polymers (Kong et al., 2019) and carbonaceous materi-
als (Darder et al., 2018; Diagboya et al., 2020; Premarathna et al.,
2019) that are capable of interacting with micropollutants contain-
ing aromatic functional groups.

Finally, the reviewed studies individually highlight the key role
of chemical interactions between polymer functional groups and
pollutants. Indeed, the results of this meta-analysis, based on those
studies and applying multiple statistical approaches, validate this
conclusion across a broad and diverse selection of CPNs and pol-
lutant classes, and confirm its generality. However, most of the re-
viewed studies investigated a simplified system in equilibrium con-
taining deionized water and a single pollutant (Fig. 7). The role
of such chemical interactions may be less pronounced upon pol-
lutant removal from ‘real water’ (i.e., higher ionic strength, com-
peting pollutants, dissolved organics, etc.) via adsorption columns
(non-equilibrium).

3.3. CPN testing and benchmarking

To translate optimistic results from lab-scale experiments to
technological applications, CPNs must be tested under realistic
conditions encountered in water treatment industries and bench-
marked against existing commercial sorbents. The adsorption per-
formance of novel CPNs should also be compared to other reported
CPNs, such as the data compiled here. This can serve as a first step
in evaluating their technological potential.

Fig. 7 summarizes the type and prevalence of experiments
used to characterize, test, and benchmark designed CPN sorbents.
We found that 85% of the observations investigated how solution
chemistry (pH and ionic strength) affects adsorption (n = 134).
These experiments are useful for understanding adsorption mech-



LA. Shabtai, LM. Lynch and Y.G. Mishael

anisms and evaluating adsorption under different operating con-
ditions. More than half of the observations included adsorption
kinetic experiments (n = 98) to obtain a kinetic coefficient, and
tested adsorption at different temperatures to determine the en-
thalpy of the reaction (n = 92). Approximately one third of the
observations (n = 54) extracted thermodynamic parameters. While
these experiments yield rich mechanistic and operational informa-
tion, they do not address four key issues of CPN applicability in
water treatment facilities: 1) adsorption of pollutants at relevant
concentrations from real water matrices, 2) regeneration poten-
tial of spent CPN, 3) CPN granulation and performance in columns
(or slurry, if relevant), and 4) side-by-side comparisons of pollu-
tant removal efficiency and cost ,relative to commercially available
sorbents at realistic operational conditions (e.g., flow rate, con-
tact time). Based on our survey of review articles, we conclude
that this knowledge gap is common across other fields of sorbent
design (Bhatnagar and Anastopoulos, 2017; Gerente et al., 2007;
Gupta et al, 2013; Wang and Giammar, 2019) and as such our
following recommendations may be pertinent to a broad research
area beyond that of CPNs.

4. Future perspectives
4.1. Technological application

In addition to thorough investigation of CPN properties and in-
teractions with the targeted pollutants, CPN applicability most also
be evaluated in realistic conditions.

1) Pollutant adsorption from ‘real water’ is often lower relative to
deionized water due to the presence of background solutes that
can compete for adsorption sites (Zietzschmann et al., 2014),
block adsorptive pores (Quinlivan et al., 2005), and form com-
plexes with pollutants in solution (Ruiz et al., 2013). Adsorp-
tion from real water was only tested in 41% of the observa-
tions (n = 64), and its effect (i.e., percent reduction in pollu-
tant removal) was seldom quantified. We strongly encourage
future studies test how effective sorbents are at removing pol-
lutants from real water (e.g., municipal or industrial wastewa-
ter at environmentally relevant concentrations), and study pol-
lutants that reflect current water treatment needs (Ray et al.,
2019). With that said, ‘real’ water can vary from place to
place, and while it is useful for evaluating CPN performance
for a specific situation, the use of standardized challenge water
(Andrew, 2002), and even standardized experimentation proto-
cols (Ali and Gupta, 2007), can streamline comparison of novel
sorbents.

Handling spent sorbents is an inherent challenge in adsorption
technology. Spent sorbents can be disposed of as solid waste
or regenerated and reused. For example, spent activated car-
bon is removed from its column and thermally regenerated,
which is a major expense. Demonstrating the feasibility of CPN
regeneration increases their economic competitiveness and re-
duces their environmental impact. In-situ regeneration in the
column further establishes the potential of CPNs (Shabtai and
Mishael, 2018, 2017). Sorbent regeneration was studied in 58%
of the observations (n = 98). Chemical regeneration (desorption
induced by acid, base, organic solvent, or electrolyte solution)
was by far the most common approach investigated in the stud-
ies included here, often reaching almost complete desorption.
Thermal, biological, and catalytic regeneration of clay-based
sorbents have also been probed (Unuabonah and Taubert, 2014;
Zhu et al., 2009). Regeneration experiments should determine
the efficiency of chemical regeneration, i.e., what percentage
is desorbed, whether adsorption is compromised by repeated
adsorption-regeneration cycles, the kinetics of desorption, and
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the volume of regenerating solution needed. Chemical regener-
ation also throws light on the adsorption mechanisms at play
(Is it pH dependent? Electrostatic? Hydrophobic?) and is there-
fore a valuable tool. Moving forward, efficient degradation of
the regenerant pollutant solution should be investigated, as it
is a key component of the adsorption-regeneration approach.
Commercial sorbents are most often applied in fixed-bed ad-
sorption columns because separation, regeneration, and reuse
of the spent sorbent are technically easier in column than
in batch mode. Accordingly, CPNs should also be tested in
columns, especially since sorbent capacity is often lower in
column than batch mode (Ray et al., 2019; Shabtai and
Mishael, 2018). However, only 13% of the observations (n = 19)
tested CPN performance in columns, of which only two tested
the CPN as a bead or granule. A major hurdle to applying
CPNs (and many other novel sorbents) in fixed-bed columns, is
their small particle size - nm to um size range - and swelling
properties, which limit water flow rate through the column.
CPN granulation can potentially overcome this challenge, al-
though the effect of granulation technique and adsorption ki-
netics must be carefully investigated (Du et al., 2017; Ouellet-
Plamondon et al., 2012). For example, we recently reported a
granulated CPN which was employed in adsorption columns for
removal of dissolved organic matter from surface water. The
mechanically stable granules enabled a high flow rate, and the
columns were in-situ regenerated and re-used (Zusman et al.,
2020).

Finally, since CPNs are proposed as alternative sorbents, they
must be experimentally compared to conventionally used sor-
bents, e.g., ion-exchangers, activated carbons, or granular fer-
ric oxides. Despite that, we found that only 13% of the obser-
vations (n = 20) performed side-by-side comparisons, which
should ideally investigate the effect of background organic mat-
ter on column performance (Kohay et al, 2015; Ling et al.,
2017). While activated carbons often have very high Qmax val-
ues, our work has shown that CPNs are advantageous in real
water scenarios because, unlike activated carbon, their perfor-
mance is less compromised in the presence of background or-
ganic matter (Kohay et al.,, 2015; Zadaka et al., 2009). CPNs can
be designed to specifically remove background organic matter
(Shabtai and Mishael, 2016), even simultaneously with microp-
ollutants (Shabtai and Mishael, 2018, 2016). Employing CPNs in
tandem with commercial sorbents could enhance the removal
of pollutant mixtures since sorbents can have different affini-
ties for different pollutants. This has been shown to optimize
adsorption efficiency (Du et al., 2017; Zusman et al., 2020), and
maintain column hydraulic conductivity, while utilizing existing
infrastructure for operating columns with commercial sorbents.
While beyond the scope of this analysis, we acknowledge that
the environmental and economic performance of new materials
and technologies (n = 4 observations) dictates their acceptance
in the market and requires rigorous assessment (Alhashimi and
Aktas, 2017; Kumar et al., 2019).

w

4.2. Scientific investigation

Although most of the research on CPN adsorbents focuses on
the chemical parameters (pH, temperature, etc.) that influence pol-
lutant adsorption (Fig. 7), we suggest that future research must
also consider the overlooked aspect of polymer conformation on
the clay mineral surface, and its influence on CPN adsorption per-
formance. Polymer adsorption on a clay mineral often transitions
from a flat conformation, as monomer “trains”, to an extended con-
formation, as monomer “loops and tails” when 1) polymer loading
increases (Kohay et al., 2015), 2) polymer charge density decreases
(Levy et al., 2019), and 3) ionic strength increases (Shabtai and
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Mishael, 2016). This transition from a “trains” to a “loops and tails”
conformation does not only occur on the clay’s external surfaces
but usually induces intercalation between the clay platelets and
may even induce platelet exfoliation.

Poly-4-vinylpyridine (PVP) is one of the few polymers that have
been investigated for the effects of its conformation on the per-
formance of PVP-based CPNs. The nitrogen atom in the pyridine
monomers can be protonated (pKa = 3.55) (HPVP) (Gardi et al.,
2015), yielding pH-dependent polycations, and functionalized with
a methyl group (QPVP) (Kohay et al., 2015) or an ethanol group
(OHPVP) (Levy et al., 2019), resulting in constant-charge poly-
cations with tunable charge densities. Accordingly, we studied
the interactions of PVP-based CPNs with micropollutants that can
be targeted through pi-pi interactions, hydrogen bonding, and
electrostatic interactions (Gardi et al., 2015; Kohay et al., 2015;
Levy et al, 2019; Radian and Mishael, 2012). We used X-ray
diffraction, Fourier transform infrared spectroscopy, scanning elec-
tron microscopy, and thermogravimetric analysis to characterize
polymer conformation, and show that it plays a pivotal role in
CPN performance, along with polymer chemistry. We found that
a “loops and tails” conformation created a nanostructure that in-
creased the Qmax and K; of QPVP-CPN and OHPVP-CPN for an-
ionic micropollutants such as gemfibrozil, diclofenac, and ibupro-
fen (Levy et al., 2019; Shabtai and Mishael, 2016). In contrast,
Lozano-Morales et al. found that a CPN bearing a highly-charged
polycation in a “trains” conformation adsorbed the anionic mi-
cropollutants sulfamethoxazole and diclofenac better than a CPN
bearing a low-charge polycation in a “loops-and-tails” confor-
mation (Lozano-Morales et al., 2018). “Loops and tails” extend-
ing into solution may offer more diverse monomer-pollutant ori-
entations (Kohay et al, 2019), while uncharged monomers in
“loops and tails” segments may promote hydrophobic interac-
tions with apolar pollutants (Lozano-Morales et al., 2018). Fur-
thermore, adsorption sites in “loops and tails” were found to
be inaccessible by larger dissolved organic matter compounds
(Shabtai and Mishael, 2016). These few studies show the impor-
tant, but understudied, role of polymer conformation on pollutant
removal.

5. Conclusions

Design of novel and exciting CPNs, even if their initial perfor-
mance requires tuning, is at the heart of scientific research in this
field. Such pioneering studies can focus on selective pollutant ad-
sorption and facile regeneration, perhaps using computer-aided de-
sign. Polymer loading, chemistry, and conformation on the clay
surface should be thoroughly characterized in future studies, and
the effects of these physicochemical properties on adsorption per-
formance should be tested to optimize CPNs. Future research can
also probe understudied minerals, polymers, and fabrication tech-
niques to design CPN with new properties. More applicable stud-
ies should rigorously evaluate and benchmark these novel CPNs
for the removal of emerging pollutants at environmentally relevant
concentrations, and in realistic operational conditions. Community-
wide adoption of standardized adsorption protocols, challenge wa-
ters, and reporting conventions will enable effective comparison of
sorbent performance.

Finally, our database can be used as a searchable reposi-
tory of adsorption data, aimed at supporting transdisciplinary
comparisons and benchmarking that drives data-based discov-
eries for the material research and environmental remedia-
tion communities. We anticipate this work will inspire the
design of smart and functional CPNs, which most certainly
will mature into widely applied, real-world water treatment
solutions.
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